Nature of PEVK-titin elasticity in skeletal muscle.

نویسندگان

  • W A Linke
  • M Ivemeyer
  • P Mundel
  • M R Stockmeier
  • B Kolmerer
چکیده

A unique sequence within the giant titin molecule, the PEVK domain, has been suggested to greatly contribute to passive force development of relaxed skeletal muscle during stretch. To explore the nature of PEVK elasticity, we used titin-specific antibodies to stain both ends of the PEVK region in rat psoas myofibrils and determined the region's force-extension relation by combining immunofluorescence and immunoelectron microscopy with isolated myofibril mechanics. We then tried to fit the results with recent models of polymer elasticity. The PEVK segment elongated substantially at sarcomere lengths above 2.4 micro(m) and reached its estimated contour length at approximately 3.5 micro(m). In immunofluorescently labeled sarcomeres stretched and released repeatedly above 3 micro(m), reversible PEVK lengthening could be readily visualized. At extensions near the contour length, the average force per titin molecule was calculated to be approximately 45 pN. Attempts to fit the force-extension curve of the PEVK segment with a standard wormlike chain model of entropic elasticity were successful only for low to moderate extensions. In contrast, the experimental data also could be correctly fitted at high extensions with a modified wormlike chain model that incorporates enthalpic elasticity. Enthalpic contributions are likely to arise from electrostatic stiffening, as evidenced by the ionic-strength dependency of titin-based myofibril stiffness; at high stretch, hydrophobic effects also might become relevant. Thus, at physiological muscle lengths, the PEVK region does not function as a pure entropic spring. Rather, PEVK elasticity may have both entropic and enthalpic origins characterizable by a polymer persistence length and a stretch modulus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a molecular understanding of the elasticity of titin.

Vertebrate striated muscle behaves elastically when stretched and this property is thought to reside primarily within the giant filamentous protein, titin (connectin). The elastic portion of titin comprises two distinct structural motifs, immunoglobulin (Ig) domains and the PEVK titin, which is a novel motif family rich in proline, glutamate, valine and lysine residues. The respective contribut...

متن کامل

Stretching molecular springs: elasticity of titin filaments in vertebrate striated muscle.

Titin, the giant protein of striated muscle, provides a continuous link between the Z-disk and the M-line of a sarcomere. The elastic I-band section of titin comprises two main structural elements, stretches of immunoglobulin-like domains and a unique sequence, the PEVK segment. Both elements contribute to the extensibility and passive force development of nonactivated muscle. Extensibility of ...

متن کامل

A survey of the primary structure and the interspecies conservation of I-band titin's elastic elements in vertebrates.

Titin is a >3000-kDa large filamentous protein of vertebrate-striated muscle, and single titin molecules extend from the Z disc to the M line. In its I-band section, titin behaves extensible and is responsible for myofibrillar passive tension during stretch. However, details of the molecular basis of titin's elasticity are not known. We have compared the motif sequences of titin elastic element...

متن کامل

PEVK domain of titin: an entropic spring with actin-binding properties.

The PEVK domain of the giant muscle protein titin is a proline-rich sequence with unknown secondary/tertiary structure. Here we compared the force-extension behavior of cloned cardiac PEVK titin measured by single-molecule atomic force spectroscopy with the extensibility of the PEVK domain measured in intact cardiac muscle sarcomeres. The analysis revealed that cardiac PEVK titin acts as an ent...

متن کامل

The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy.

The I-band region of the giant muscle protein titin contains a large domain enriched for the amino acids proline, glutamate, valine, and lysine and is denoted the PEVK domain. The PEVK domain of titin encodes a random coil shown to be an important factor in the passive elasticity of titin. Muscle-specific splicing of 116 PEVK exons encodes this domain. It has been proposed that proline contents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 14  شماره 

صفحات  -

تاریخ انتشار 1998